Python网络爬虫入门到实战在线阅读
会员

Python网络爬虫入门到实战

杨涵文 周培源 陈姗姗
开会员,本书免费读 >

计算机网络计算机理论、基础知识5.8万字

更新时间:2024-03-04 17:26:29 最新章节:封底

立即阅读
加书架
下载
听书

书籍简介

本书介绍了Python3网络爬虫的常见技术。首先介绍了网页的基础知识,然后介绍了urllib、Requests请求库以及XPath、BeautifulSoup等解析库,接着介绍了selenium对动态网站的爬取和Scrapy爬虫框架,最后介绍了Linux基础,便于读者自主部署编写好的爬虫脚本。本书主要面向对网络爬虫感兴趣的初学者。
品牌:机械工业出版社
上架时间:2023-07-01 00:00:00
出版社:机械工业出版社
本书数字版权由机械工业出版社提供,并由其授权上海阅文信息技术有限公司制作发行

最新章节

杨涵文 周培源 陈姗姗
主页

同类热门书

最新上架

  • 会员
    《Web3.0》针对当下火热的Web3.0话题,介绍Web3.0的相关专业知识、技术实现方法及应用前景。全书共9章,第1章介绍了Web3.0的基本知识;第2、3章介绍了Web3.0的基础技术栈和拓展技术栈;第4章介绍了Web3.0的生态构建,包括去中心化自治组织、开放式金融、加密货币、代币经济与数字市场、数字身份、创造者经济、注意力经济等;第5章阐述了Web3.0的行业应用;第6章介
    成生辉计算机13万字
  • 会员
    本书以网络安全为主线,对计算机网络安全所面对的各种威胁、表现形式、解决技术、应对方案等知识进行讲解,让读者全面掌握网络安全技术的应用方法和防范措施。全书共10章,内容包括计算机网络安全概述、网络模型中的安全体系、常用渗透手段及防范、病毒与木马的防范、加密与解密技术、局域网与网站安全、身份认证及访问控制、远程控制及代理技术、灾难恢复技术等。在正文讲解过程中,穿插了知识点拨注意事项动手练等板块,以助读
    钱慎一 徐明明编著计算机12.3万字
  • 会员
    深度强化学习是人工智能和机器学习的重要分支领域,有着广泛应用,如AlphaGo和ChatGPT。本书作为该领域的入门教材,在内容上尽可能覆盖深度强化学习的基础知识和经典算法。全书共10章,大致分为4部分:第1部分(第1~2章)介绍深度强化学习背景(智能决策、人工智能和机器学习);第2部分(第3~4章)介绍深度强化学习基础知识(深度学习和强化学习);第3部分(第5~9章)介绍深度强化学习经典算法(D
    谢文杰 周炜星编著计算机16.9万字
  • 会员
    《微课设计与制作标准教程(全彩微课版)》内容围绕微课制作展开,以实用高效为写作目的,用通俗易懂的语言对微课设计与制作的相关知识进行详细介绍。
    钱慎一 石月凤编著计算机6.6万字
  • 会员
    本书内容是在充分利用偏最小二乘原理优势的基础上,重点研究改进与优化偏最小二乘的不足方面,使其更好地适应中医药数据分析。主要内容包括分别引入非径向数据包络分析和降噪稀疏自编码器优化偏最小二乘的噪声处理,使其处理缺失值和噪声更有效;分别引入特征相关、L1正则项和灰色关联优化偏最小二乘的特征提取,实现有效降维和提取特征子集;分别融合受限玻尔兹曼机、稀疏自编码器、深度置信网络提取非线性成分,优化偏最小二乘
    杜建强 聂斌 熊旺平计算机10.5万字
  • 会员
    本书源于斯坦福大学的相关课程,主要介绍不确定状态下的决策算法,涵盖基本的数学问题和求解算法。本书共分为五个部分:首先解决在单个时间点上简单决策的不确定性和目标的推理问题;然后介绍随机环境中的序列决策问题;接着讨论模型不确定性,包括基于模型的方法和无模型的方法;之后讨论状态不确定性,包括精确信念状态规划、离线信念状态规划、在线信念状态规划等;最后讨论多智能体系统,涉及多智能体推理和协作智能体等。本书
    (美)米凯尔·J.科申德弗 (美)蒂姆·A.惠勒 (美)凯尔·H.雷计算机25.7万字
  • 会员
    测试设计思想是本书的主题。针对测试的两个基本目的和五个基本问题,本书归纳了八类测试设计思想,即系统的思想、枚举的思想、准则化的思想、多样化的思想、统计的思想、冗余的思想、推理的思想、控制的思想。围绕每一类思想,本书深入讲解来自不同领域的测试设计方法、实践及理念,借此剖析如何依据该思想缓解测试的基本问题。了解这些思想,有助于读者奠定扎实的测试理论基础,适应当代研发生产活动多学科交叉、多领域融合的发展
    周海旭编著计算机20.4万字
  • 会员
    本书是作者多年在数据智能领域中利用机器学习实战经验的理解、归纳和总结。出于回归事物本质,规律性、系统性地思考问题理论为实践服务并且反过来充实理论,为更多人服务的想法和初心,本书系统地阐述了机器学习理论和工程方法论,并结合实际商业场景落地。全书分为3部分。第1部分是机器学习的数学理论理解,这部分不是对于机器学习数学理论的严谨推导和证明,更多是对于理论背后的到底是什么,为什么要这样做的通俗理解。尽可能
    叶新江编著计算机17.3万字
  • 会员
    本书面向广大数据科学与人工智能专业的学生及初学者,力求通俗易懂、简洁清晰地呈现学习大数据与人工智能需要的基础数学知识,助力读者为进一步学习人工智能打好数学基础。全书分为4篇,共19章:微积分篇(第1~5章),主要介绍极限、导数、极值、多元函数导数与极值、梯度下降法等;线性代数篇(第6~10章),主要介绍向量、矩阵、行列式、线性方程组、特征值和特征向量等,并介绍这些数学知识在人工智能中的应用;概率统
    陆伟峰 谷瑞主编计算机8.5万字