2.2 点的运动方程合成——三种运动方程间的关系
本节分析三种运动——绝对运动、相对运动和牵连运动之间的关系。一般来说,若已知动系运动(即牵连运动)的规律,则可以通过坐标变换来建立点在定系中的坐标(或矢径)与在动系中的坐标(或矢径)的关系。如图2-2所示,定系为O1x1y1z1,沿其坐标轴的单位矢量分别为i1, j1, k1;动系为O2x2y2z2,沿其坐标轴的单位矢量分别为i2, j2, k2。r1为绝对运动的矢径,r2为相对运动的矢径。
![](https://epubservercos.yuewen.com/2C4459/3590371004171201/epubprivate/OEBPS/Images/figure_0028_0001.jpg?sign=1739660383-6qxCUcg3b2ZPrFwlBAN1vv7vDoxlQSfy-0-ea9f85539671eb414776790ef435fa19)
图2-2 定系与动系中矢径的关系
由图2-2可知
因为
r1=x1i1+y1j1+z1k1, r2=x2i2+y2j2+z2k2
所以
x1i1+y1j1+z1k1=xO2i1+yO2j1+zO2k1+x2i2+y2j2+z2k2
即
(x1-xO2)i1+(y1-yO2)j1+(z1-zO2)k1=x2i2+y2j2+z2k2
将上式两边依次点乘i1, j1, k1,可得
![](https://epubservercos.yuewen.com/2C4459/3590371004171201/epubprivate/OEBPS/Images/figure_0029_0001.jpg?sign=1739660383-BlBPQ55VXKcbUEX3L9q8EAGuIZ1adrsK-0-60889f68c770662d62f64277a787a8dc)
将上式写成矩阵的形式为
![](https://epubservercos.yuewen.com/2C4459/3590371004171201/epubprivate/OEBPS/Images/figure_0029_0002.jpg?sign=1739660383-GUms3vVQsSLWTMDasDzLTRVvXBK6zncM-0-490565ee571cc2c4b6bfccd8ee3f30c0)
若记
![](https://epubservercos.yuewen.com/2C4459/3590371004171201/epubprivate/OEBPS/Images/figure_0029_0003.jpg?sign=1739660383-WsgZqtijAAeMkonebznr39BHREblYtWT-0-909fa696a4b3038d07d45c834d176c95)
则式(2-1)为
![](https://epubservercos.yuewen.com/2C4459/3590371004171201/epubprivate/OEBPS/Images/figure_0029_0004.jpg?sign=1739660383-nbpMbbVsryZmd11xe0IMt6xXxjICnNt8-0-20bbf6ee0e69ce375cf6cfbb343d8fea)
式中,C12称为变换矩阵(transformation matrix)。特殊地,若动系与定系的坐标原点重合,则有
![](https://epubservercos.yuewen.com/2C4459/3590371004171201/epubprivate/OEBPS/Images/figure_0029_0005.jpg?sign=1739660383-ML1UmGF9k3BszTMMPMe8vcT97Q4Dr6Lf-0-9e9f60ad44637c83a4a0c10660869782)
二维情况的简化
对于二维问题,其定系为Oxy,动系为O'x'y',动点为M,如图2-3所示。其变换矩阵为
![](https://epubservercos.yuewen.com/2C4459/3590371004171201/epubprivate/OEBPS/Images/figure_0029_0006.jpg?sign=1739660383-CBig4N9sVuZE8tsuWqQuQzxHexojexXy-0-e2e51d404ad538516f3e6d3ca89b0367)
图2-3 二维情况
![](https://epubservercos.yuewen.com/2C4459/3590371004171201/epubprivate/OEBPS/Images/figure_0029_0007.jpg?sign=1739660383-4xCNu4pKgh2uD8CNU89TBbh0hUH2nnaV-0-41089bf35f221d86bf6edf5b48a47058)
若绝对运动方程为
x=x(t), y=y(t)
相对运动方程为
x'=x'(t), y'=y'(t)
牵连运动的方程为
xO'=xO'(t), yO'=yO'(t), φ=φ(t)
则不难得到三种运动方程间的关系为
![](https://epubservercos.yuewen.com/2C4459/3590371004171201/epubprivate/OEBPS/Images/figure_0030_0001.jpg?sign=1739660383-zWuKEEl3yGyRaMorOf2ireuMPevTqOBh-0-dedc8c04bc216587713c1738136067f6)
例题2-1
点M相对于动系Ox'y'沿半径为r的圆周以速度v做匀速圆周运动(圆心为O1),动系Ox'y'相对于定系Oxy以匀角速度ω绕点O做定轴转动,如例题图2-1所示。初始时Ox'y'与Oxy重合,点M与O重合。已知OO 1=r,试求点M的绝对运动方程。
![](https://epubservercos.yuewen.com/2C4459/3590371004171201/epubprivate/OEBPS/Images/figure_0030_0002.jpg?sign=1739660383-vYs99Gk2tPldOd91mRqMumFjNn6p4N2J-0-003d666d3f0e303a0d73ef8e780ac578)
例题图2-1
分析:本题是已知点M的相对运动方程,求点M的绝对运动方程。为此,只要利用式(2-1)写出上述两种运动方程之间的关系即可。
解:
点M的绝对运动方程与相对运动方程满足如下关系:
![](https://epubservercos.yuewen.com/2C4459/3590371004171201/epubprivate/OEBPS/Images/figure_0030_0003.jpg?sign=1739660383-nVZtLmuI3We1kTNKM3mTEg3DuqW8eCrw-0-31c26bcdf5642aba793f83592dbf122d)
连接O1M,由图可知:。于是,得点M的相对运动方程为
![](https://epubservercos.yuewen.com/2C4459/3590371004171201/epubprivate/OEBPS/Images/figure_0030_0005.jpg?sign=1739660383-eArkkn7IjqRm47D7YnHmyRVznj8qJIo9-0-e965adbe5cc9aa9f66e402f3a1bd4ca7)
牵连运动的方程为
xO'=xO=0, yO'=yO=0, φ=ωt
利用坐标变换关系式(a),可得点M的绝对运动方程为
![](https://epubservercos.yuewen.com/2C4459/3590371004171201/epubprivate/OEBPS/Images/figure_0030_0006.jpg?sign=1739660383-zV7pXZYbhVTNsgmYD1pBGYpAKeyjSGaA-0-7e3691bc976389c214fdab6909b081a0)
例题2-2
用车刀切削工件的端面,车刀刀尖M沿水平轴x做往复运动,如例题图2-2所示。设Oxy为定坐标系,刀尖的运动方程为x=b sinωt。工件以等角速度ω逆时针方向转动。求车刀在工件圆端面上切出的痕迹。
![](https://epubservercos.yuewen.com/2C4459/3590371004171201/epubprivate/OEBPS/Images/figure_0031_0001.jpg?sign=1739660383-GaMTjD8NgGgoJmByOc8RJ9KKsmlHdKNS-0-fac58635fb006fec8aa7da985ec8eab5)
例题图2-2
分析:本题是已知车刀刀尖的绝对运动方程,求刀尖M相对于工件的轨迹方程。
解:
车刀刀尖的绝对运动方程和相对运动方程间的坐标变换关系为
![](https://epubservercos.yuewen.com/2C4459/3590371004171201/epubprivate/OEBPS/Images/figure_0031_0002.jpg?sign=1739660383-w5njSCRk5dN49Yt1G9v6T72mAU4Q1vNW-0-82dc247d8103b5f43f3670158a7d7e32)
取刀尖M为动点,动系固定在工件上,则动点M在动系Ox'y'和定系Oxy中的坐标关系为
![](https://epubservercos.yuewen.com/2C4459/3590371004171201/epubprivate/OEBPS/Images/figure_0031_0003.jpg?sign=1739660383-Ge1NivJHfP3m4WhrWwOCr8JWf1gSax8R-0-30a7b2b65efe4394487bd75f5e14e8e5)
将点M的绝对运动方程(x, y)=(b sinωt, 0)代入式(a)中,得
![](https://epubservercos.yuewen.com/2C4459/3590371004171201/epubprivate/OEBPS/Images/figure_0031_0004.jpg?sign=1739660383-Next5EwJIX0UOK0cKktpuAurUuW490np-0-9625fb66f2fbab4bf40d112ac638bc9c)
上式即为车刀相对于工件的运动方程。
从上式中消去时间t,得刀尖的相对运动轨迹方程为
![](https://epubservercos.yuewen.com/2C4459/3590371004171201/epubprivate/OEBPS/Images/figure_0031_0005.jpg?sign=1739660383-7rqvSPOoV1kLslkEJBIe5oqOp6cH81pg-0-9b12096f529c421a0845628a4e436a68)
可见,车刀在工件上切出的痕迹是一个半径为的圆,该圆的圆心C在动坐标轴Oy'上,圆周通过工件的中心O,如例题图2-2中的虚线所示。