- 数学分析新讲(第3册)
- 张筑生
- 1733字
- 2024-11-03 14:23:04
第十五章 第一型曲线积分与第一型曲面积分
§1 第一型曲线积分
我们已经知道怎样计算连续可微曲线的弧长(第六章§3).在本节中,将对曲线孤长的概念作更细致的说明,然后讨论第一型曲线积分.
l. a可求长曲线
考查R3中的一条连续的参数曲线
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0030_0192.jpg?sign=1739126403-6ikf90MmfRzjFn9J9daKrRjScFPXhaBK-0-659e267c8607dcca47731f2118c4604e)
如果曲线(1.1)的起点与终点重合,即
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0030_0193.jpg?sign=1739126403-fIWXNRsGD1pAlURNrmXXyvxl0dbT5FHF-0-15930ddc78c9dc27a19e096741906180)
那么我们就说这是一条闭曲线,如果曲线(1.1)没有自交点(即除非是,只要
,就有
,那么我们就说这曲线是简单曲线.参数方程(1.1)用分量表示就是
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0030_0197.jpg?sign=1739126403-rHIO2TxpVJtDg0h1m60rYVkMk2I7r5Je-0-2e4263c5e1bcb73f3d80dd37e33cccc1)
设和
是曲线(1. 1)上的两点,则联结这两点的直线段的长度可以表示为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0030_0200.jpg?sign=1739126403-scgRV6d4MurnmSET7TswW7gp7b6dqIMV-0-956f69ff264d88e25c5f32c58eb0b582)
也就是
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0030_0201.jpg?sign=1739126403-4SFmqyTxPaNw8h4A8JDRem1BOhEc5ApC-0-1e951cd095e2a91476537d07a93e17cd)
假设γ是一条简单曲线,它的参数方程是(1.1).考查参数区间[α,β]的任意一个分割
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0031_0202.jpg?sign=1739126403-n8OLM4ponE539VeAN5YZLhHG4uzZKbu6-0-ffc3e62fe5e8ddeb2af883571ae7a996)
对于k=1,……,n,将曲线γ上参数为tk-1与tk的点用直线段联结起来,我们得到内接于γ的一条折线.这折线的长度可以表示为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0031_0203.jpg?sign=1739126403-cMsMDOlTfg7HWwwEXZk2l19ZeRYtfWyb-0-dc9fbb5d0198a55da3ab38788e41fc43)
定义1 如果
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0031_0204.jpg?sign=1739126403-uyQK1QElGyriUUBbdsxgPGpugCFKDSlc-0-c895a1b626d4fb65de26edccb358f994)
那么我们就说γ是一条可求长曲线,并约定把
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0031_0205.jpg?sign=1739126403-kEuVTP3cGAol6a38BdUdCFPAnKnZMpNQ-0-890022a0bca601e85cd93bdf384a0e5b)
叫做曲线γ的孤长.
定理1 设γ是用参数方程(1.1)表示的一条简单连续曲线,则γ可求长的充分必要条件是存在有穷极限:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0031_0206.jpg?sign=1739126403-mohhh0HQRFckVuQ9gEmJSn2HJNUTGBAs-0-0ed48f917d4fe3f9e90419c76aa9a7d2)
其中
证明 充分性设存在有穷极限
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0031_0208.jpg?sign=1739126403-MZ8qK7E3HnAJ01cn20GQxXsHTm8VZKro-0-f8f4d1a8914a6069d7faeff4f0663cc8)
则对ε=1,可选择δ>0,使得
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0031_0209.jpg?sign=1739126403-Ya06sSFiNPsYCLuQ8JftbbtMHNhsGYZI-0-9a9038918545f82d5b35a7dcb8abe292)
现在设π是区间的任意一个分割.我们可以用增加分点的办法将进一步细分为π',使得
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0031_0210.jpg?sign=1739126403-NKhw8ikj3COzWOWnfuxDbl0Z78DWbWzA-0-3e74ffbdfebacd35f5f24832ea16a66a)
于是就有
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0031_0211.jpg?sign=1739126403-gvdSfu9MP5IYtupKWOm7CrbjRcE1vvbF-0-07710a115b879c23a8cce2aeba224913)
这证明了
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0031_0212.jpg?sign=1739126403-AqZq9ZCU5Ag9ov0EtB1eFN9BIJEUu5G3-0-a9c04c57139e01432e0038990ceb601e)
必要性如果
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0031_0213.jpg?sign=1739126403-nbkgTMLNQM4bawsEnjWpdY8ilHSGWOuf-0-8a2debbc4906da47a03c05c3fbeb9859)
那么对任何ε>0,存在[α,β]的分割
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0032_0214.jpg?sign=1739126403-ffZQnn6CUrpwgDYbhZYYtCBMUsEkxjXE-0-6e9959d5a38ccefe0cb43f6de49b73b8)
使得
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0032_0215.jpg?sign=1739126403-Zp8OOdR4jQ3pZV3UKUyWkUX2MfNVDOnK-0-9bb99f671f7304fd9f8f20fd1bd42dfd)
由于函数r(t)=(x(t),y(t),z(t))在闭区间[α,β]一致连续,存在δ,0<δ<|π0|,使得只要
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0032_0216.jpg?sign=1739126403-Fe19uIVoXtCvLu3En989RM7GaGmewlEZ-0-52368e205f0fd2299c6acdb144310183)
就有
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0032_0217.jpg?sign=1739126403-1x36h7K4JzyClpMT0uQgNPAL4nZuMcjH-0-86820bd0f7a935bf7b542b81590b2cb0)
(这里m是分割π0在(α,β)内的分界点的数目).现在设π是[α,β]任意一个分割,满足这样的条件
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0032_0218.jpg?sign=1739126403-NzPNfMJfTeKDk7NpdCpMH9jg4hS73TVx-0-ed2a95d8107a0474a89db9f8d44ecf14)
将π0和π的分点合在一起,得到[α,β]的一个分割π1,显然有
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0032_0219.jpg?sign=1739126403-FuiqKzLQqxmJOpaSMuc3pSji4MbUEkBu-0-24e72d47913eab5b221dc975a483b0ca)
下面来证明
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0032_0220.jpg?sign=1739126403-866CZ1tx5nkCJGuZEcy1qw7Y9d0HwVHn-0-f7957c2a6b1fe918a523adf7fb982f21)
为书写简单,我们引入记号
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0032_0221.jpg?sign=1739126403-hEzD0yY0j9hkeO68L78xdT2p5sL8LOs8-0-1449df193f0c7f50d7e4da5a09223236)
和式
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0032_0222.jpg?sign=1739126403-qAk8cEb8HytYrCDdanFS3eyU8ZRc9WM6-0-f52268c8320a64778baf31973d486e0b)
可以拆成两部分:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0032_0223.jpg?sign=1739126403-IToBHszLRikG65Wk04kMjJT43ab4fv5o-0-10652882edc16a9f4da52152d7511bb2)
其中第一部分所涉及的参数区间[tj-1,tj]内部不含有π0的分点;第二部分所涉及的参数区间内部含有π0的分点(后一类区间总数不超过m个).和数λ(γ,π1)与和数λ(γ,π)相比较,差别只是第二部分和数中的每一项ψ(tk-1,tk)被改变为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0033_0224.jpg?sign=1739126403-TsFVug3BuKQnV4Av9OxJBXJr6ku00Jrf-0-f5fd500ad916ec0b31426f1d84e5778a)
因为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0033_0225.jpg?sign=1739126403-mP45iIiUnWX5T6XVbwFg3YuIowlgJKiS-0-409d1253dedb65b64ad7612c6fa4b2f7)
所以
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0033_0226.jpg?sign=1739126403-uFsczNjgyo2yput4f3QGN1HTXPUFE6G3-0-6d9156934caadba21363989396e3def0)
由此得到
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0033_0227.jpg?sign=1739126403-8yQsCs0N2hnyPvIpagijHma9i6YkB2bb-0-62d4d89c35184dfd09ad8e0f287f889f)
我们证明了
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0033_0228.jpg?sign=1739126403-ceD541qrQd5sSNHtLHpCAZaQF98nT19q-0-733567221d00a73e6b8a984f5f32e2e9)
推论设γ:r=r(t),t∈[α,β],是一条连续可微(或分段连续可微)的参数曲线,则γ是可求长的,并且
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0033_0229.jpg?sign=1739126403-QILdAAzv0EUvdtAdUs9V8CIbGuPJ4qLJ-0-79130c70854edebd2c06bf5dde604e97)
l. b第一型曲线积分
设有一段质地不均匀的直金属线L放置在0 X轴上,所占的位置是闭区间[a, b].设这金属线在点x处的线密度等于ρ(x)[1].我们来求金属线L的质量m.这是一道典型的定积分应用题.利用微元法,很容易写出计算公式
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0034_0231.jpg?sign=1739126403-zbKULbPWgzRSWhEIjDteSiz3kb8pRG3J-0-55f0e9a247d2a27292ea12b194d0c32e)
再来考虑一个类似的问题:如果L不是直金属线,而是一段弯曲的金属线,那么L的质量又该怎样计算?为了解答这问题,我们用一串分点
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0034_0232.jpg?sign=1739126403-d73XYi72Xw0xHYWONb5vQfx4RdtUHgzv-0-95a45e894d7f0b75d3a24708b68167e3)
把L分成n小段(这里A和B是L的两端点).在Pj-1到Pj这一小段曲线弧上任意选取一点
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0034_0233.jpg?sign=1739126403-XUbD2hw8o9kBmQjqiJZWkAR034wu5rIr-0-6844794e87c0eb56a854fc53c1869d4e)
并把这小段曲线弧的长度记为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0034_0234.jpg?sign=1739126403-W5TeO6Dg114PKkIpBQrTHkHqbGXOf7gR-0-5d7b72e2c252c710d7be652e8dfce65c)
于是,从Pj-1到Pj这一小段金属线的质量可以近似地表示为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0034_0235.jpg?sign=1739126403-t9VRmYniyMg435OUuFl61UYbD3tNkS9q-0-a164e513388863a6c38a712c8f6c6458)
整段金属线L的总质量可以近似地表示为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0034_0236.jpg?sign=1739126403-z1RrdEbJQbLrpGGe4PYPp6ZEIWByAtmG-0-2f2c07f675137239b8dfdb8511fc5c14)
如果所分弧段的最大长度趋于0:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0034_0237.jpg?sign=1739126403-ixwXelvcMdqkgf4MVbpGx6wPQzD0Xe9f-0-3448865b35e9353ea618af80df7ac582)
那么(1.2)式的极限就应该是所求的质量:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0034_0238.jpg?sign=1739126403-NYy1Tb4NIV5WHrh8mfofChAXBVCFrmlG-0-0a3bff89702f7785338aeee5022af7c1)
这里的“分割——近似——求和——求极限”的手续,与定积分的情形十分类似,但却是沿着一条曲线实施的.由此可以引出第一型曲线积分的一般定义.
定义 2设L是R3中的一条可求长曲线,函数f(x, y,在L上有定义.我们用依次排列的分点
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0034_0239.jpg?sign=1739126403-Z7oowA0VX0m3bEXmBwCYb1UqTss6u0G7-0-d2748d8e762dc0e46d18779e82ce18ad)
把L分成n段(A和B是L的端点,对于闭曲线的情形认为A=B),约定把从Pj-1到Pj这一小段的曲线弧长记为Δsj,并记
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0035_0240.jpg?sign=1739126403-YhNbxts1ky3Qc46E2KdC78F3BjDkKOSD-0-5cbcf187dae3c7052e84e98d9008314f)
在弧段Pj-1Pj上任意选取点Qj(j=1,2,……,n),然后作和数
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0035_0241.jpg?sign=1739126403-FeBGVDKgcY0SfTbdGl8lde9GByTZRpUR-0-7ad3b07e0b1f848cb2198a39ee7a5050)
如果当d→0时和数(1.3)收敛于有穷极限,那么我们就把这极限叫做函数f沿曲线L的第一型曲线积分,记为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0035_0242.jpg?sign=1739126403-C24dvQ0ak2ymDlcGjqvyru33lf8F0Eb3-0-f45ce508419acef643b6650ee90cbaae)
注记 我们把这种对弧长的积分叫做“第一型”曲线积分,是为了与以后将要学习的另一种曲线积分相区别.
读者容易看出:与定积分的情形类似,作为和数的极限的第一型曲线积分,具有线性、可加性等性质.
如果以弧长s作为参数把曲线L的方程写成
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0035_0243.jpg?sign=1739126403-kf9XrPAmnRzI8YXywrkG3AVUj5mP9x99-0-d6b6c565921c7db76ef41b832adc7078)
那么根据定义立即就可以把第一型曲线积分表示为定积分
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0035_0244.jpg?sign=1739126403-y6T42Jq464EcAkLeMhBWLmZ5LtvzfVEc-0-488c455260a617d2ca66bb13a5f48357)
非弧长参数的连续可微曲线(或者分段连续可微曲线),可以通过变元替换化成以弧长为参数的情形.我们有以下的计算公式:
定理2 设L:r=r(t),t∈[α,β]是一条连续可微的参数曲线,满足条件
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0035_0245.jpg?sign=1739126403-LE7Y3KcuQB3sD0T2fJEvZeAtKvAwg8IA-0-55fa9a1c4edf96447208430d154b2891)
并设函数f在L上连续.则f沿着L的第一型曲线积分存在,并且这积分可按下式计算:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0035_0246.jpg?sign=1739126403-wR7DGApVc0qdNA6QdltytlT1Vifycogg-0-08971f8a21472d8e6185fb463c2a4a3d)
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0036_0247.jpg?sign=1739126403-ozmyR9T1bRRsc46d20BDJMT0ZLPL9Jua-0-21ab3fad56131b9a3ef5071a41cf8a27)
证明 在所给的条件下,曲线L是可求长的,其弧长表示为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0036_0248.jpg?sign=1739126403-C9gvTLlLw2b2Xyz7KlNkDP4YDvp8zvk1-0-b5413e7d95a267439735bb1ccd9702a4)
并且
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0036_0249.jpg?sign=1739126403-uSBFM74Va3wBghzbw2KQB5E1STDSRfCc-0-f6ad2b9a766a236031dc376238269d6e)
根据反函数定理,参数t是弧长s的连续可微函数:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0036_0250.jpg?sign=1739126403-KA9J0zGjUAp1LpQMv1j9jZ188Kzjh3HM-0-3055f8766946d4f5a35f446c4f5428b9)
于是,我们可以用弧长s作为参数,将曲线L的方程写成
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0036_0251.jpg?sign=1739126403-P9IIMdw7YDB0PHr7YLHfnKp8XXkl5VHe-0-7c81d930c85f45cca6e1eb306c498d60)
函数f沿L的第一型曲线积分表示为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0036_0252.jpg?sign=1739126403-phIHr6QZOQhVX0pFJH2tEEnnni7wDkiq-0-a0f90a1641c0b5e5df67bc87da607708)
在上式中作变元替换
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0036_0253.jpg?sign=1739126403-mPcK8ueV5j4MR6UPGnpizJYrYnagJ64A-0-0bf57ad3571125ddc1f65d00961ce67a)
就得到定理中的计算公式.□